If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2=40
We move all terms to the left:
r^2-(40)=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 2(13+n)=75 | | 3n=2n+18 | | 2(6x-8)=6(2x-6) | | -91=13r | | 5(x-1)+6=3x+2(2+x) | | 1/4(8x+8)=5/3(3x-6) | | 53x=2 | | 50-18x=12 | | 7+x-5=-4 | | 5^2x-1=+2^x | | -2x+4(1+4x)=88 | | 3x+3(5x-6)=180 | | 2(6x−8)=6(2x−6) | | 2x²+5x+11=0 | | 7(y-8)=16-2y | | 4(x+1)-7=2x+2(1+x) | | n-12=-19 | | 9a+72=0 | | 26=-10-4x | | 23=m+2+2m | | 3x+4(4x-6)=5(2x+5) | | 56-11*x=1 | | -6x-(4x+9)=(x-1)-2(4x-6) | | 12-4n=10 | | -3(r-15)=0 | | 9=(x+8)=6x-6 | | r+16=19 | | 4x-13+2x=5+6x-18 | | 1/2x-3=7-3/4x | | 6=-7x+6+8x | | 0.80x+2.90=11.70 | | 435x=+x |